L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction

نویسندگان

  • Yongwei Nie
  • Xu Cao
  • Chengjiang Long
  • Ping Li
  • Guiqing Li
چکیده

Current face alignment algorithms can robustly find a set of landmarks along face contour. However, the landmarks are sparse and lack curve details, especially in chin and cheek areas where a lot of concave-convex bending information exists. In this paper, we propose a local to global seam cutting and integrating algorithm (L2GSCI) to extract continuous and accurate face contour. Our method works in three steps with the help of a rough initial curve. First, we sample small and overlapped squares along the initial curve. Second, the seam cutting part of L2GSCI extracts a local seam in each square region. Finally, the seam integrating part of L2GSCI connects all the redundant seams together to form a continuous and complete face curve. Overall, the proposed method is much more straightforward than existing face alignment algorithms, but can achieve pixel-level continuous face curves rather than discrete and sparse landmarks. Moreover, experiments on two face benchmark datasets (i.e., LFPW and HELEN) show that our method can precisely reveal concave-convex bending details of face contours, which has significantly improved the performance when compared with the state-ofthe-art face alignment approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anthropometric Analysis of Face using Local Gaussian Distribution Fitting Applicable for Facial Surgery

Human facial plays a very important role in the human’s appearance. Many defects in the face affect the facial appearance, significantly. Facial plastic surgeries can correct the defects on the face. Analysis of facial color images is very important due to its numerous applications in facial surgeries. Different types of facial surgeries, such as Rhinoplasty, Otoplasty, Belpharoplasty and chin ...

متن کامل

Deformable Pedal Curves with Application to Face Contour Extraction

Pedal curves are the loci of the feet of perpendiculars to the tangents of a fixed curve to a fixed point called the pedal point. By varying the location of the pedal point, deformable pedal curves have an important feature of incorporating a global parameterized shape into the curve evolution framework. In this paper, a hybrid geometric active model based on deformable pedal curves for face co...

متن کامل

3D Face Modeling From Monocular Video Sequences

In this chapter we present two algorithms for 3D face modeling from a monocular video sequence. The first method is based on Structure from Motion (SfM), while the second one relies on contour adaptation over time. The SfM based method incorporates statistical measures of quality of the 3D estimate into the reconstruction algorithm. The initial multi-frame SfM estimate is smoothed using a gener...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Active Contours for Head Boundary Extraction by Global and Local Energy Minimisation

Active contours are an attractive choice to extract the head boundary, for deployment within a face recognition or model-based coding scenario. However, conventional snake approaches can suffer difficulty in initialisation and parameterisation. A dual active contour configuration using dynamic programming has been developed to resolve these difficulties by using a global energy minimisation tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.01605  شماره 

صفحات  -

تاریخ انتشار 2017